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Abstract 
Deep learning-based algorithms are increasingly prevailing over traditional pixel-based 
methods for image classification, as the growing adoption of these technologies drives 
superior performance. Deep learning and multi-temporal images work well together to 
produce better precision of crop type distribution. The current study incorporates different 
sensors of varying spatial and spectral resolution, belonging to monthly/fortnightly time 
series (2021-2022) to classify various crop types in part of Ranchi district, which has diverse 
economic crops mainly rice, wheat, mustard, peas, maize, ragi, and vegetable crops. The 
study utilized time-series datasets which are constructed based on vegetation indices (VIs) 
and spectral stacking, respectively, using three-dimensional-convolution neural networks 
(3D-CNNs) and random forest-based algorithms. The results obtained from three-
dimensional Convolution neural networks outperform the accuracy gained from random 
forest. It shows that 3D convolution neural networks give 96.77% accuracy using a monthly 
stack of Normalized Difference Vegetation Index (NDVI) of Sentinel-2 datasets while the 
random forest algorithm gives an overall accuracy of 94.52% with a kappa coefficient 0.93. 
The present study shows that the 3D-CNNs-based deep learning framework provides an 
effective and efficient method of time series representation in multi-temporal classification 
tasks.  
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Introduction 

Accurate crop type classification is essential for informed decision-making in precision 

agriculture, resource allocation, and land-use planning (Cai et al., 2018; Conrad et al., 2014). 

Traditional methods of crop identification often rely on manual interpretation of satellite 

imagery or limited spectral indices, which may lack the capacity to capture the complexity of 

agricultural landscapes(Pantazi et al., 2016).  

In recent years, the integration of advanced technologies in agriculture has become 

imperative to address the challenges of food security, resource optimization, and sustainable 

land management(Massey et al., 2017). Remote sensing, with its capacity to capture detailed 

information about the Earth's surface, has proven instrumental in providing critical insights 

for agricultural monitoring(Lin et al., 2022). In particular, the advent of high-resolution, 

multispectral satellite missions such as Sentinel-2 has opened new frontiers for extracting 

spatio-temporal patterns in crop dynamics. Deep learning has proven effective in various 

machine-learning tasks, with Convolutional Neural Networks (CNNs) emerging as a 

prominent architecture for remote sensing applications. The increasing use of CNNs in 
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diverse remote sensing problems and satellite data types underscores their effectiveness in 

tasks like land cover classification, semantic segmentation, and object detection. Notably, 

Two-Dimensional Convolutional Neural Networks (2D-CNNs) focus on spatial-spectral 

information, while Three-Dimensional Convolutional Neural Networks (3D-CNNs) leverage 

time series data in multi-spectral and hyperspectral domains, as evidenced by numerous 

publications (Gallo et al., 2023; Ji et al., 2018; Varela et al., 2022). 

By harnessing the power of 3D-CNNs, which excel in learning hierarchical features from 

large and diverse datasets, this research aims to provide a robust solution for automated and 

accurate crop type classification(Ge et al., 2021; Joshi et al., 2023; Khan et al., 2023; van 

Klompenburg et al., 2020; Xu et al., 2020; Yi et al., 2022; Zhong et al., 2019). This study 

focuses on the application of 3D-CNNs for crop type classification, leveraging the rich 

information embedded in spatio-temporal remote sensing data (Wang et al., 2021). CNNs 

have demonstrated remarkable success in image classification tasks, and their application to 

crop type classification stands as a promising avenue to enhance the precision and efficiency 

of agricultural monitoring systems(Xu et al., 2021; Yan & Ryu, 2021). 

Previous studies have explored various machine learning techniques(Gao et al., 2021) 

for crop classification, ranging from traditional classifiers to more advanced methods such as 

Support Vector Machines (SVMs) and Random Forests (RF) (Asgari & Hasanlou, 2023; Khan 

et al., 2023). However, the inherent spatial and temporal dynamics of agricultural landscapes 

require models capable of understanding both local and global contextual information. CNNs 

have proven effective in addressing this need, showcasing superior performance in image 

recognition tasks and paving the way for their application in the field of precision 

agriculture(Ajadi et al., 2021). 

Several noteworthy studies have successfully employed CNNs for crop type 

classification using remote sensing data. For instance, (Zhong et al., 2019)demonstrated the 

utility of CNNs in discriminating between crop types with high accuracy, while Jones et al., 

(2020) explored the integration of temporal information to enhance the classification 

performance over multiple growing seasons. 

This study aims to contribute to the existing body of knowledge by presenting a 

comprehensive investigation into the application of 3D-CNNs and RF model for crop type 

classification using spatio-temporal remote sensing data in parts of Ranchi district, 

Jharkhand. Through the utilization of Sentinel-2 datasets and innovative neural network 

architectures, we seek to achieve a higher level of accuracy and generalization in crop type 

identification, thereby facilitating more effective agricultural management practices. 

 

Materials and Methods 

Study Area: Study area consists of Ratu block which is located on the Ranchi plateau proper, 

lies between 23.41° N latitude and 85.2° E longitude (Figure 1). It has total geographical area 

of 127.27 Km2 and an average elevation of 650 m above mean sea level. The study area has a 

subtropical climate with hot summers from March to May and consistent rainfall during the 

southwest monsoon from June to October. The winter season, spanning November to 

February, is characterized by dry and cold weather. Normal annual rainfall averages 

1394mm. The land is undulating containing 97.62% of the total area as cultivable, out of 

which 34.19% is irrigated land (in 2011). The major crops grown in this region are rice, 

wheat, ragi, mustard, maize and vegetables crops.  
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Datasets: Sentinel-2 data: Present study utilized time-series datasets of Sentinel-2 data for 

crop type mapping for Rabi season in Google Earth Engine (GEE) platform. This data offers 

distinct advantages in crop type mapping, making it a valuable resource for precision 

agriculture. With its high spatial resolution of 10 meters and multi-spectral capabilities, 

Sentinel-2 provides detailed and comprehensive imagery essential for discriminating 

between various crop types. The mission's revisit frequency allows for frequent and 

consistent monitoring, capturing temporal changes in crop growth and enabling the 

identification of seasonal variations. Additionally, Sentinel-2's wide spectral range, including 

infrared bands, enhances its capacity to assess vegetation health, detect anomalies, and 

differentiate between different crops. The open and free access to Sentinel-2 data further 

promotes accessibility for researchers, farmers, and decision-makers, fostering 

advancements in crop monitoring and land management practices. 

Sample Data: Data sampling took place on three distinct dates: January 13th, February 10th, 

and March 13th, 2022. A comprehensive total of 300 crop type samples were meticulously 

collected, with a specific focus on various crop varieties. This collection comprised 100 

samples for wheat, 50 for mustard, 60 for peas, and 90 for vegetable crops. The thorough 

sampling across different dates and diverse crop types ensures a representative dataset for 

subsequent analysis and assessment. 

 

Fig. 1 Location map of the study area shows RGB (R:B8,G:B4,B:B3) composite of sentinel-2 data 
(dated: March 2022). 
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Methodology 
 

The methodological workflow consists of following steps: 1) data pre-processing to create 

cloud free monthly mosaic datasets for the study area, 2) generation of NDVI time series, 3) 

generation of training and validation samples, 4) data classification using RF and 3D-CNNs, 4) 

Accuracy assessment and validation (Figure 2). 

Data pre-processing: Present study used Sentinel-2 time series data for crop type 

classification for rabi crop (December 2021-April2022) in google earth engine (GEE) platform. 

The data pre-processing includes generation of cloud free, monthly mosaic datasets for 

study area. Cloud pixel percentage was taken less than 2% (using filter function in GEE), 

which provides precise information of data.  

 

Generation of NDVI time-series:  Monthly time-series NDVI was generated from 10m 

resolution red and near-infrared spectral bands (Equation (1)) to study the temporal growth 

patterns of the various cropland classes.  

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

2NIR+RED
                                                                                                Eq. 1 

It is one of the most used vegetation indices for temporal vegetation studies as it 

minimizes the spectral noise effects caused by topographic variations and illumination 

conditions(Belgiu & Csillik, 2018). Other vegetation indices or spectral bands were not 

considered in the present study. 

 

Generation of training and validation samples: For the current study, a total of 300 crop type 

samples were collected. Of this dataset, 70% was utilized for training the model, while the 

remaining 30% was reserved for validation purposes. 

  

Random Forest algorithm: Random Forest (RF) is a non-parametric, well-documented and 

mature classification method for satellite-based imagery (Adrian et al., 2021). This ensemble 

method involves creating of numerous decision trees during training. The number of trees 

serves as input parameter, and for each tree, a random subset of variable is selected to 

construct a single tree. (Bhuyan et al., 2023; Cao et al., 2021; Gao et al., 2021; La Rosa et al., 

2019). However, a greater number of decision trees doesn’t always allow to improved 

classification accuracy (Prins & Van Niekerk, 2020).  

    In this study, RF model was used for time-series stack of normalized vegetation difference 

index (NDVI) computed from sentinel-2 data within the study period December2021 through 

April 2022. This model was run in google earth engine platform that allows a max pixel 

sample of 5000 and maximum number of 500 trees. The total number of samples used in this 

study was 300 and 100 number of trees. Research indicates that the optimal number of 

decision trees falls within the range 100-500 (Adrian et al., 2021; Belgiu & Csillik, 2018; 

Bhuyan et al., 2023). 

 

3D-CNNs algorithm: Three-Dimensional Convolutional Neural Networks (3D-CNNs) stand as a 

powerful tool in deep learning, extending the capabilities of traditional CNNs to capture 

intricate spatio-temporal patterns (Zhong et al., 2019). It consists of multiple layers and are 

mainly used for volumetric image processing such as time-series datasets. The process of a 
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3D-CNNs encompasses various essential stages for the handling and examination of time 

series data. It includes several steps such as; data preprocessing, architecture design, 

convolution layer, pooling or subsampling layer, fully connected layers, back propagation 

and training, evaluation and validation, and testing.  

    This study utilized rectified linear unit (ReLU) and softmax activation function for dense 

and output layer. In combination, ReLU and softmax contribute to the effectiveness of neural 

networks for crop type mapping. ReLU promotes efficient training through non-linearity, 

while softmax ensures meaningful and calibrated predictions, enhancing the overall accuracy 

and interpretability of the crop classification model. 

 

Accuracy assessment: The accuracies of the pixel obtained from RF classifier and 3D-CNNs 

algorithm were evaluated in terms of overall accuracy, producer’s accuracy, user’s accuracy 

and kappa coefficient. 

 

 
 

Fig. 2 Methodological flowchart adopted for crop type mapping in the study area. 

 

Results and Discussions 

Analysis of Classification using multi-temporal algorithm: 

RF classification: Random Forest classifier has demonstrated the strength of detection of 

multiple crops in this district for rabi season (Figure 3), which corresponds to four rabi 

season crops viz., wheat, mustard, pea, and vegetables. The overall accuracy and kappa 

coefficient was obtained as 94.52% and 0.93 (Table 1) indicating the response of multi-date 

rabi season spectral response in Visible Near Infrared Red (VNIR) region to the algorithm, 

that takes care of hierarchical elimination or aggregation of decision rules.  

 

3D-CNNs classification: The classification using a 3D Convolutional Neural Network (3D-

CNNs) achieved an impressive overall accuracy of 96.77%, coupled with a robust kappa 
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coefficient of 0.95 (Table 1). This classification was based on the utilization of the Normalized 

Difference Vegetation Index (NDVI) stack derived from Sentinel-2 data.  

    Within the region of interest, the total area identified as part of the Rabi cropping season 

was found to be 11.83 Km2 (Figure 4). Among these, specific crop types were discerned, 

revealing areas of 5.96 Km2 for wheat, 1.66 Km2 for mustard, 1.97 Km2 for peas, and 2.25 Km2 

for vegetable cultivation. Moreover, the classification process identified other non-cropped 

areas, encompassing 59.72 Km2, indicating regions without active agricultural cultivation. 

Additionally, areas designated as rice fallow were also recognized, totalling 55.71 Km2. These 

results underscore the efficacy of the 3D-CNNs in accurately delineating different crop types 

within the specified area, showcasing its potential for high-precision crop type classification 

in the context of agricultural monitoring using Sentinel-2 data. 

 
Comparison with the state of art classifier: 3D-CNNs have been shown to achieve state-of-

the-art results on crop type mapping tasks. The 3D CNNs achieved an overall accuracy of 

96.77%, which is significantly higher than the accuracy of traditional machine learning 

algorithms such as random forest. The overall results shows that the 3D-CNNs approach is 

more robust for cropland classification than any other pre-existing deep learning models. 

Moreover, hyper tuning of parameters is required to adapt to new problem. 

 The limitation of proposed model is the availability of remote sensing datasets and 

requirement of high computing power for larger area of interest. Future work should focus 

on implementation of 3D-CNNs using a greater number of bands including various 

vegetation indices. Furthermore, it can be also tested using hybrid fusion datasets. 

Table 1 Accuracies and Kappa coefficients. 

Method Overall Accuracy Kappa Coefficient 

Random Forest 94.52% 0.93 
3D-CNNs 96.77% 0.95 

 

Fig. 3 Rabi cropped type classification map: (a) NDVI composite: Red- January 2022; Green- February 
2022; Blue- March 2022 (b) Classified using RF classifier. (c) Classified using 3D-CNNs. 
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Fig. 4 Distribution of cropped type for Rabi season (2022) classified using 3D-CNNs. 

Conclusions 

In this paper, we proposed a 3D-CNNs and RF model for crop type mapping. 3D-CNNs, in 

contrast to traditional deep learning models reliant on local labeled samples, addresses label 

missing issues by acquiring knowledge from labeled samples in diverse domains and 

dynamically transferring this knowledge to target domains. The choice between Random 

Forest and 3D-CNNs for crop type mapping hinges on the specific characteristics of the data 

and the task at hand. Random Forest, with its ensemble learning and non-linear modeling 

capabilities, is a reliable choice for tasks where interpretability and feature importance are 

critical. On the other hand, 3D-CNNs shine in tasks requiring end-to-end learning and a deep 

understanding of spatio-temporal patterns in the data. The decision should be guided by the 

nature of the data, the availability of computational resources, and the specific requirements 

of the crop type mapping application. Combining the strengths of both techniques may also 

be explored for enhanced accuracy and interpretability. 
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